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SUMMARY 

In this Memorandum the authors initiate the application 

of the simple yet powerful computational technique of 

polynomial approximation to problems in dynamic programming. 

The theoretical applicability of orthogonal polynomials 

is first discussed and then applied to one— and two—dimensional 

allocation problems.  Numerical results obtained from FORTRAN 

programs Involving Legendre polynomials are presented. 
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POLYNOMIAL APPROXIMATION—A NEW COMPUTATIONAL TECHNIQUE 
IN DYNAMIC PROGRAMMING—I: ALLOCATION PROCESSES 

1.  INTRODUCTION 

The problem of maximizing the function 

(1.1) F(xrx2, ....x^) = g1(x1) + S?(x?) + ••• + bNUN) 

over the domain 

(1.2) x1 + x2 + ••• -i- x - x,  x1 > 0 

can be reduced via familiar dynamic programming techniques 

(see [l]) to that of determining the sequence of functions 

[f (x)!  generated by means of the recurrence relation 

(1.3)    i^U) = g^x) 

fn+1(x) =    max  [gn+1(y) + fn(x - y) 
0<y<x 

The problem can thus oe solved numerically in a very simple 

fashion^ regardless of the complexity of the functions  g.(x). 

A number of important allocation processes can be resolved in 

this way.  11' we consider cases in which two distinct types of 

resources must be allocated^ we face the problem of maximizing 

the function 

1-4)     F(xrx, , ...)xN;y1)y2, . ..^y^ 

= 51(xry1) + g2(x2,y2) + ••• + sN(xN,yN) 
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over the domain 

(1.5)    x, + xp + ••• + x    = x,      x. 2 0^ N 

y1 + y2 + ••• + yN = y,   yi > 0. 

Theoretically, there is no difficulty in applying the same 

techniques. 

The maximization problem can be reduced to the deter- 

mination of the sequence (f (x,y)] generated by means of 

the recurrence relation 

(1-6)    fn+l^X,y) = max     tsn+1(w,r) + fn(7v - w,y - r) ] 
0<w<x 
0<r<y 

In principlej this equation can be solved computationally 

using the same technique that applies so well to (1.3).  In 

practice (see [l] for a discussion), questions of time and 

accuracy arise.  There are a number of ways of circumventing 

these difficulties, among which the Lagrange multiplier plays 

a significant role. 

In this series of papers, we wish to present a number of 

applications of a new, simple and quite powerful method, that 

of polynomial approximation.  We shall begin with a discussion 

of the allocation process posed in the foregoing paragraphs 

and continue, in subsequent papers, with a treatment of 

realistic trajectory and guidance processes.  In a separate 

series of papers we shall apply this fundamental attack upon 
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dirnensionality to the solution of a number of the equations 

of mathematical physics. 

We would like to express our appreciation to Oliver Gross 

for the analytic solution of some test problems we used to 

check the accuracy of our techniques^ and for his general 

interest In the program. 

POLYNOMIAL APPROXIMATION 

In the systematic study of dynamic programming as a 

computational algorithm given in [l],a function f(x)  is 

considered to be a table of values at an appropriate set of 

grid points: 

(2.1) X f(x) 

0 fo 
A fl 

2A r2 

KA f.K 

In this way, the function f(x)  is stored in the computer. 

For functions of one variable with K = 100 or 1000,  this 

is a reasonably convenient way to proceed.  For functions of 

two variables, this procedure becomes a bit inconvenient since 

(K + 1)  values for x  combined with  (K + l)  values for y 

yields a total set of  (K + l)  values.  Consequently, when 

we encounter functions of three or more variables, we must 
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balance accuracy against time and the limited storage of 

contemporary computers in our choice of K. 

The storage of functional values by means of a table of 

values is ideally suited to the treatment of problems involving 

functions of quite arbitrary form.  It is, on the other hand, 

quite wasteful and inefficient if we are dealing with functions 

possessing a definite structure, which is to say, situations 

in which there is a high correlation between the values of 

f(rA)  and f(sA).  Since functions of this type occur in 

many important applications, and throughout mathematical 

physics, it is worthwhile to develop methods which take 

advantage of the "smoothness" of the function. 

One such method is polynomial approximation, or to be 

precise, generalized polynomial approximation.  We represent 

the function in the form 

M 
(2.2)    f(x) = Z  a cp, (x), 

k=l K K 

where the  qv(^)  are known elementary functions such as x , 
H. 

sin kx,  P. (x)   (the Legendre polynomial of degree k)  or 

T, (x)  (the Cebycev polynomial of degree k),  and then store 

the function for all values of interest by means of the ßct 

of K coefficients  [a-, , ap, . . ., aM ]. 

It is important to point out that (2.2) is particularly 

useful in automatically furnishing the interpolation—values 

frequently needed in dynamic programming calculations.  If 
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one uses a. table of values of the form shown in (2.1), 

interpolation is frequently a source of difficulty. 

To determine the coefficients a,  it is convenient to 

make the ^^(x)  be an orthonormal set.  Then 

(2.3)    ak = J  f(x)(pk(x)dxJ 

assuming for the purposes of convenience that 0 <^ x. < 1.  We 

can, of course, use a Cebycev fit instead, and we will explore 

this in subsequent papers.  A priori, we would suspect that it 

would be more efficient to use a mean—square fit (implied by 

(2.3)), and take M to be larger, than to go to the trouble 

of determining the a,  to minimize the function 

M 
[2 A) max  if(x) - Z a,cp, (x) |, 

0<x<l       k=l K K 

which for a fixed M may be expected to yield a more accurate 

approximation.  Alternatively, one could use an approximation 

by polygonal functions [l]. 

To evaluate the  a,  without requiring a knowledge of too 

many values of f(x),  we use a quadrature technique 

R 
(2.5)    ak = 1    wif(x1)cpk(x1) 

1=1 

where the weights  w,  and the quadrature points  x.  are 

chosen so that the equation 



1 R 
(2.6)    /  g(x)dx = 2 w g(x ) 

is exact for polynomials in x of degree (2R — 1) or less. 

This requirement narrows us down to the Gauss quadrature 

technique  [2],  If we use generalized polynomials 

(expressions such as (2.6)), we will obtain different weights 

and quadrature points. 

We may then store the function f(x) for 0 < x < 1 

by storing the coefficients a, or the particular values 

f(x.)  which enable us to compute the  a, . 

;.  APPLICATION TO DYNAMIC PROGRAMING 

Consider now the application of these ideas to the 

computational solution of the functional equations of dynamic 

programming.  Suppose that we wish to compute the sequence 

[f (x)]  determined by 

(5.1) fN(x) = max [gN(y) + f^U - y) ],, 
0^y<x 

N > 2,,  given that f-|(x) = g,(x).  To avoid the tabulation of 

each of the functions  fM(^)  at the x—grid  [0,A,...,KAh 

where K may be a large number, we approximate to each 

function  fM(
x) ^n  the manner indicated above.  Starting 

with  f-,(x),  we store the values  f^x.),  i = 1,2,...,R, 

needed to evaluate  f-,(x — y)  in the formula determining fp(x), 

(5.2) f?(x) = max [gjj   )   +  f^x-y)]. 
0<y<x  ^ ^ 



We then determine successively f0(x-,), fn{x^),...,   r„(x ), 

a set of values which stores the function iV,(x).  This 

process is then repeated. 

Although the calculation of f _->(* - y)  using (2.2) 

is fan more time—consuming than taking a value from storagej 

we expect to gain time over—all because of the fact that we 

are required to calculate only a few values,  f (x.), 

1 = 1,2,....,R,  at each stage. 

4.  THE LEGENDRE POLYNOMIALS 

Since in allocation processes we have a range  [0,x ] 

which stays constant as the process continues from stage to 

stagey we can normalize a-.rl consider the basic interval to 

be  [Ojl].  Since the interval is finite and we want, at the 

moment, a polynomial approximation, we shall employ Legendre 

polynomials. 

Let f ..(x)  denote the standard Legendre polynomial, 

defined over  [- 1,1], and let cp,(x)  be defined by the 

relation 

(4.1)    cp, (x) = ( 2k + l)1//^Pk(2x - i; 

The sequence is then orthonormal over  [0,1],  i.e., 

{k.2) J       cpk(x)cp.(x)dx = 0^ 

0 

From the standard recurrence relations for p, (x),  we obtain 

the relation 
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4.3) -P^x)  = I,    qUx) = 31/2(2x - 1), 

?1+2(x) I2i±-1 
(i+T 

iA 
(21 +  l)1/2(2x - l)qp1+1(x) 

.  q,  (x) 
,21 - l)1/<: 

This  relation makes  the  evaluation of the sequence of values 

of    (P1 (x)     for any    x    a relatively simple matter. 

3-    EXAMPLES 

In order to experiment with this new approximating 

procedure, we devised a FORTRAN program for the I3M-7090 

whereby at each stage., after obtaining the new coefficients 

a, ^ ,     we computed f,(x)  from {2.2)  for a succession of 

as many values of x as desired, and printed the result after 

each computation.  We used two modes of output, either a list 

of numerical values,  [x,f,(x)],  or a graphical plot (done 

directly by the 7090) of x  versus r.(x). 

We experimented with several types of functions g^x) 

for which the results could be derived from analytic 

considerations.  Using the known analytic results as a 

checkpoint, we varied the parameters R, M.< and the grid size 

H,  in order to determine the degree of accuracy we might 

expect in general.  V/e found remarkably good agreement to 2 

Oliver Gross was of considerable assistance to us in 
this respect. 
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or more significant figures with a relatively low order of 

approximation, namely R = 5, M = b.  This is encouraging 

from the point of view of extending the method in the experi- 

mental investigations of higher—dimensional allocation 

processes where, as pointed out above, time and storage 

aspects become significant. We also incorporated in our 

program restraints of the form 0 < ^ < ^ < b, < x,  since 

constraints of this nature often occur in applications. 

a.  Time Estimates 

Following are some estimates of the execution time 

required on the 7090: 

1. 10 seconds for 4 stages,  R = 3, M = 6 and a grid 

of O.OD both for the search and output listing. 

2. 3 minutes for a total of 4 cases of 10 stages each; 

R = 3, M = 4; R = 9, M = 6; R = 7, M = 8; R - 10, M = 11. 

The grid in the search for the maximum is 0.01 and the output 

listing is given for every x along the grid. 

3. 3 minutes for the total of 4 cases mentioned above, 

10 stages per case and a grid of 0.01 for the search.  The 

output is a graph where the independent variable x  is 

listed at intervals of 0.023. 

b.  Numerical Results 

■1 
1 '? (x)   =   i(x)  ''r .     Using the   Schwarz  inequality,   we 

^eadily  obtain the  values 

fN(x)   »  (f(N -f  1)(2N + Ijx)1^. 
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can be readily handled by the methods described  in Sees.  2 

and 5. 

The dynamic programming recurrence relation  is: 

fNU>y)  = max 
R VVV  +  fN-l(x ~ XN'y ~ y N' 

where  R is determined by a,, < x,. < minfxjb,.), 
N — N —    v   N 

c < yM < mi
n(y>d ).  Let x.,  i = 1,...,R,  be the roots 

'N 

of the normalized Legendre polynomial ^ (x),  and let  [y ) 

be a duplicate set of these quadrature points. Each function 

f (x,y)  is expressed approximately by the relation 

M  M 
(6.3)    fv(x,y) = 2  Z (N) 

r-1 s=l 
r.s tM tiiy). 

where the coefficients, using the quadrature method, are 

given by 

R  R 
(6.4) (N) _ 

k,s   = if1 ^ 
wiwJ fN(Xi^j) 4(Xi >yJ- 

As in the one—dimensional case, we start with the known 

values f (x,y) =» g1(x1,y1),  x1 - x,  y1 = y.  In stage n 

we store the values  f (x ,y ),  for i,j =» ]J2,...,M,  and 

then compute and store the values a« Q    in the storage r, s 

allotted to the previous stage.  The latter coefficients are 

utilized in the computation of f (x — x  -.,y - y  -, )  to K nv    n+1 ^  Jn+1/ 

obtain the values of f .-1(^^.1)  ln the next stage. 
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7■  EXAMPLES 

a. Time Estimate 

The execution time required on the 7090 was 2 minute? for 

•'-I stages, with R = ^ r^ = t,  a grid of H - 0.0'j    in the two- 

dimensional search, and an output listing of 3 test values of 

f(x,y)  in each stage. 

b.  Numerical Results 

1.  gi(x,y) = (21 - l)1/2(xy)1/J+.  Using the Holder 

inequality, we readily obtain the exact values f (x,y) = n(xy 

*n(x,y) - {c'n-l)x/n',   yn(x,y) = (2n-l)y/n'.  Our results for 

R = ^ M ^ b, and a grid of 0.03 in the search are; 

a/4 

Function Exact Computed 

f2(.5,.5) 1.40 1.40 

0O75 0-3:) (to the neare 

V1'1) 4.00 3-91 

Here again the agreement was poor at the origin, presumably 

because of the singular behavior of  (xy)    at x = 0, y = 0. 

To confirm this hypothesis, we considered the next case. 

2-  g..(x,y) - (x + iy)/(l + x + iy).  This case, as well 

as the theoretical values, was suggested by 0. A. Gross, and 

he determined the exact values. 
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Function Exact Computed 

f2(i,o) 

1.17 

O.667 

1.17 

0.6^7 

8.  DISCUSSION 

As can be seen, the agreement in general is quite satis- 

factory. We can obtain reasonably accurate values of the 

maximum return and of the optimal allocation policy using 

small amounts of machine time. 

Combining these techniques with the method of the 

Lagrange multiplier^ we can expect to solve three-and four- 

dimensional resource allocation problems.  Extending the 

method to cover the approximation of functions of 3)   ^s   5 and 

6 variables, we can treat Hitchcock—Koopmans allocation- 

processes of quite high dimension. 

Finally, if we combine these techniques—polynomial 

approximations and Lagrange multipliers—with that of 

successive approximations, there should be very few 

allocation processes which still resist our efforts. 
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ICC3 

77 

7fi 
76 

1C04 

1CC5 

7 72 
71 

IC06 

Z( I5)=H0LBL 
DG 1004 L5=lfL2 
IFI19-11*15-1)76,77,76 
DO 78 16 = 1, 110 
ZlI6)=H0LD0T 
CONTINUE 
CCNTINUfc 
CONTINUE 
DC 1005 15=1,110,10 
Z|I5)=HCLC0T 
Z(N5)=HCLAST 
OUTPUT 42, 1006,Y, (Z( 17) 
CONTINUE 
CONTINUE 
RETURN 
FORMAT! 1H FIG.3, 1C9A1) 
FNC 

17=1., 105) 
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